Basal and zinc-induced metallothionein in resistance to cadmium, cisplatin, zinc, and tertbutyl hydroperoxide: studies using MT knockout and antisense-downregulated MT in mammalian cells.

نویسندگان

  • Wendy Kennette
  • Olga M Collins
  • Rudolfs K Zalups
  • Jim Koropatnick
چکیده

Metallothioneins (MTs) mediate resistance to metal and non-metal toxicants. To differentiate the role of MTs from other protective factors, resistance to zinc (Zn), cadmium (Cd), tertbutyl hydroperoxide (tBH), and cisplatin (CDDP) was compared in renal cell lines from wild type (MT-WT) and MT-1/MT-2 knockout (MT-KO) mice. MT-WT cells were more resistant to tBH than MT-KO cells but, unexpectedly, were more sensitive to Zn, Cd, and CDDP. Thus, basal expression of MT conferred resistance to tBH, but not to Cd or CDDP. Pretreatment with Zn increased MT expression and enhanced resistance to Cd and CDDP only in MT-WT cells, indicating a critical role for MT in this form of resistance. By contrast, Zn-pretreatment increased resistance to subsequent Zn exposure, but did not alter resistance to tBH, regardless of MT-status. Therefore, Zn-induced resistance to subsequent exposure to Zn (but not to Cd or CDDP) was mediated by non-MT factors, and neither Zn-induced MT nor other factors affected tBH sensitivity. Furthermore, antisense down-regulation of MT in human HeLa cells reduced basal MT levels and resistance to TBH, but not to Cd or CDDP. Therefore, basal MT alone can mediate resistance to TBH (but not to Cd or CDDP) in mouse and human cells. These data suggest that MT can mediate resistance to toxicants by different mechanisms, some of which correlate with the cellular content of MT protein. Moreover, resistance to some agents (Cd and CDDP) can be enhanced by inducing MT. Resistance to other agents (tBH) requires only basal (non-induced) MT levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disruption of metallothionein expression with antisense oligonucleotides abolishes protection against cadmium cytotoxicity in molluscan hemocytes.

The relationship between metallothionein (MT) induction and cytotoxicity was examined in isolated oyster hemocytes exposed in vitro to cadmium, copper, and zinc. In all cases MT induction increased to peak levels with increased metal dose, then declined with continued increases in dose. The effectiveness of these metals as inducers of MT was cadmium > copper > zinc, with cadmium the most effect...

متن کامل

Enhanced apoptosis in metallothionein null cells.

Metallothioneins (MTs) are major intracellular, zinc-binding proteins with antioxidant properties. Mouse embryonic cells null for MT due to loss of functional MT I and II genes (MT-/-) were more susceptible to apoptotic death after exposure to tert-butyl hydroperoxide or the anti-cancer agents cytosine arabinoside, bleomycin, melphalan, and cis-dichlorodiammineplatinum(II) compared with wild-ty...

متن کامل

Metallothionein is a potential negative regulator of apoptosis.

Apoptotic resistance can either be desirable or undesirable, depending on the conditions. In cancer chemotherapy, it is critical that tumor cells are selectively and effectively killed while leaving normal cells undamaged. Since acquisition of apoptotic resistance appears to be a common occurrence during malignant transformation, elucidating the mechanisms underlying apoptotic resistance is an ...

متن کامل

Participation of upstream stimulator factor (USF) in cadmium-induction of the mouse metallothionein-I gene.

The roles of the bHLH-Zip protein, upstream stimulatory factor (USF), in mouse metallothionein-I (MT-I) gene expression were examined. The promoter contains a putative USF binding site which overlaps an antioxidant response element (ARE) located at -101 bp relative to the transcription start point. The USF/ARE composite element increases basal expression of the mouse MT-I gene, and partly media...

متن کامل

Differential Gene-Expression of Metallothionein 1M and 1G in Response to Zinc in Sertoli TM4 Cells

Background: Zinc (Zn) as an important trace element is essential for testicular development and spermatogenesis. Molecular mechanism of Zn action in the reproductive system may be related to metal binding low-molecular weight proteins, metallothioneins (MT). Our objective was to determine the effect of Zn on two important isoforms of MT, MT1M and MT1G genes expression on testicular sertoli cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2005